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Abstract. We investigate simple examples of supersymmetry algebras with real and Grassmann parameters.
Special attention is paid to the finite supertransformations and their probability interpretation. Furthermore
we look for combinations of bosons and fermions which are invariant under supertransformations. These
combinations correspond to states that are highly entangled.

Introduction

Supersymmetry is well understood and widely exploited in
QFT and in models as a set of infinitesimal transformations
generating some essential selection rules (see, e.g. [1]). The
step towards obtaining the finite supertransformations is
usually considered as unneccessary, thus placing SUSY in
a distinguished position as compared with the other sym-
metries we know. On the other hand, already the simplest
supersymmetric model – SUSY QM [2] has a consistent
physical interpretation in completely conventional terms
as it is equivalent to one particle and one spin, a system for
which e.g. the probability interpretation perfectly holds.
This observation motivates one to inquire how far it is pos-
sible to construct a realization of SUSY that avoids the
introduction of Grassmann parameters and thus allows for
a probability interpretation. Some efforts in this direction
are due to Levine and Tomozawa [3] who tried doing this at
the price of additional generators in the (extended) Lie al-
gebra.

We choose another strategy, namely, we consider a
graded ∗-algebra A which is generated by some bosonic
and fermionic operators and possibly some Grassmann
or Clifford variables. As supertransformations we take ∗-
automorphisms of A which do not respect the grading, and
thus mix bosons and fermions. The only other structural
element we use is a one-parameter group of automorphisms
of A (the time evolution) which commutes with the super-
transformations. The emphasis of this paper is different
from the one most commonly seen in the waste literature
on this subject (∼ 104.5 papers) in the following respects.
(i) We consider the supersymmetry as a symmetry in
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the conventional understanding. Thus we do not stay on
the Lie-algebraic level but consider finite supertransfor-
mations. Therefore for our operators the product is also
defined and not only the commutator or the anticommu-
tator.
(ii) We do not require that the time evolution is part of
the Poincaré-group which is represented by automorphism
groups of A.
(iii) We want to work with the standard probability in-
terpretation of quantum mechanics. There a state over a
∗-algebra gives a probability distribution and a representa-
tion. The case II of Grassmann variables (defined in Sect. 2)
becomes then entirely strange. In the representation there
are vectors of zero norm and all transition probabilities in
this sector vanish.

In this context, two important questions to be answered
are the following: what happens under such supersymmetry
transformations with the states, and which are the invari-
ant structures? The former is crucial for the probability
interpretation of the theory; for the latter, an example of
an invariant state is certainly provided by the Fock vac-
uum. However, the interplay between supersymmetry and
temperature and its consequences for particle physics are
less trivial and are still not a matter of consensus.

Some of these issues we could find only briefly discussed
in the literature (see, e.g. [1,4]); others, to our knowledge,
have not yet received due attention. In particular, the ques-
tion whether the usual thermal state over one bosonic and
one fermionic mode breaks the supersymmetry with Grass-
mann variables is confusing because of the seemingly con-
tradictory results to be found in the literature. Girardello
et al. [5] concluded that SUSY is broken because only the
ground state is annihilated by the supercharges and the
higher states are not. Though this statement is correct, van
Hove calculated carefully all contributions to the change of
the state to first order in the superparameter and showed
that they cancel [6]. Thus he concluded that SUSY was not
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broken. Again, this conclusion is incorrect, as we find that
for the supercharges there is a change in the state (Sect. 6).
Then came the sweeping proof of Buchholz and Ojima [7]
that the KMS-properties and SUSY are incompatible even
to first order. This proof seems impeccable since it just
uses the fact that a supersymmetric Hamiltonian is posi-
tive but for a KMS-state its spectrum is R. This appears in
the thermodynamic limit. Here we concentrate on finitely
many modes of fermions and bosons and therefore the spec-
trum is semibounded and discrete. Already on this level
we will see that odd derivations violate the invariance of
the thermal state.

Our result is that supertransformations can very well
be constructed without the help of Grassman variables.
Moreover, when Grassmann variables are involved, the su-
pertransformations change the thermal state, while in the
case of real variables they leave it invariant.

1 ∗-Automorphisms and supertransformations

The problems addressed in what follows are matters of
principle and appear already in the simplest supersym-
metric situation of one Bose and one Fermi mode. There
we have the supersymmetry as a one-parameter group of
transformations of the algebra A generated by the two cre-
ation and annihilation operators. In fact, we shall consider
three different mixed Bose–Fermi algebras, A, Aθ and AC ,
defined as follows.1
(I.) A is the algebra generated by the operators a, a†, b, b†,
satisfying canonical commutation or anticommutation re-
lations (CAR, respectively CCR)

{
a, a†} =

[
b, b†

]
= 1,

[ a, b ] =
[
a, b†

]
= 0 . (1.1)

(II.) The algebra Aθ is the same A, extended by a Grass-
mann variable θ so that

θ = θ̄, θ2 = {θ, a} = [θ, b] = 0. (1.2)

(III.) Furthermore we consider the case of Clifford variables
where we have {θ, θ̄} = 1, the corresponding algebra being
denoted by AC . Its odd elements contain odd powers of
the fermionic operators a, a†.
Remark. A and AC are C∗-algebras, whereas Aθ is not,
since the C∗-condition ‖θ̄θ‖ = ‖θ‖2 would imply ‖θ‖ = 0,
therefore θ = 0. Aθ is however a ∗-algebra and a Grassmann
module; any of its elements can be written asA+θB [8]. The
“soul” θB is a two-sided ideal of Aθ, the “body” A being the
quotient algebra. The Hilbert-space representations are not
faithful; in them the soul vanishes. In such a representation
eisGθ = 1 and the supertransformations become an illusion.

A unitary element U, U† = U−1, creates a transforma-
tion of the algebra which preserves both the multiplicative

1 To conform with the common notation in the supersym-
metry literature we denote the hermitian conjugation by † but
we keep the ∗-terminology for the algebraic considerations.

and the ∗-structure. We are interested in one-parameter
groups of supertransformations which preserve the total
particle number N = a†a + b†b =: Nf + Nb but not the
individual Nf and Nb. The simplest generators for such
transformations for the algebras under consideration are
the hermitean elements

G = ab† + a†b, for A,
Gθ = −iθ

(
ab† + a†b

)
= Gθ̄ , for Aθ,

Gθ,θ̄ = −i
(
θab† + θ̄a†b

)
, for AC . (1.3)

Thus
A → A(s) = eiGsA e−iGs, A ∈ A (1.4)

gives a ∗-automorphism group of A and similarly for Aθ.
From the definitions follows G2 = N and G2

θ = 0. Thus

eiGs = cos
√
Ns+

iG√
N

sin
√
Ns (1.5)

and
eiGθs = 1 + θ G s . (1.6)

Remarks.
(1) Alternatively we could have considered GA := i(a†b−
ab†), but this is equivalent toG since the two are related by
an even transformation commuting with the time evolution
eiNt: GA = eiNf π/2Ge−iNf π/2. However we shall later find
a time evolution which is still supersymmetric in the sense
that it leaves G invariant but no longer GA.
(2) As another alternative, one can consider the group gen-
eratedbybothG andGA. This group is infinite-dimensional
since [G, GA] = 2i(b†b− a†a− 2a†ab†b) is not linearly ex-
pressible by these generators. In contradistinction, the cor-
responding generators with Grassmann parameters – Gθ

and GAθ – form a two-dimensional group.
(3) The group generated by G and N is just the product
of the two groups and thus isomorphic to R2, in sharp
contrast to the Lie superalgebra. The only trace on the
level of finite transformations of the relation between N
and G is the simple expression (1.5) for eiGs.

Thus we conclude that there are four different can-
didates for a possible SUSY transformation of the three
algebras.
Ia. In A one can generate a one-parameter group of auto-
morphisms by

A(s) = eiGsAe−iGs, G = a†b+ ab†, A ∈ A; (1.7)

In this spirit, for instance, the Jaynes–Cummings model
has been investigated in [9].
Ib. In A an odd derivation generates a one-parameter group
of linear transformations by

A′ =
d
ds
A(s) := δA, δA =

{{G,A} for A odd,
i [G,A] for A even,

(1.8)
where A is the basis (a, b) of A and δ is such that δA∗ =
(δA)∗. Thus one can express supertransformations infinites-
imally without Grassmann or Clifford variables (see, e.g. [7,
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10]). We take the convention with the factors i such that
δ is compatible with conjugation, δA∗ = (δA)∗. However,
δ is not compatible with multiplication since only for even
elements bi it satisfies the Leibnitz rule δ(b1b2) = (δb1)b2 +
b1δb2. For odd elements ai we get δ(ab) = (δa)b + ia(δb)
and δ(a1a2) = i(δa1)a2 − ia1δa2. Therefore it can be inte-
grated to a one-parameter group of maps A → A which
commute with the time evolution and respect the linear
and ∗-structure of A but not its multiplicative structure.
Note that for any element A ∈ A, δ2A = δδA = i [G2, A],
which gives its time derivative if G2 = H.
II. In Aθ a one-parameter group of automorphisms is gen-
erated by

A(s) = eiGθsAe−iGθs, Gθ = −iθG = G†
θ, A ∈ Aθ;

III. In AC the operator Gθ,θ̄ = −i(θab† + θ̄a†b) = G†
θ,θ̄

in
turn generates a one-parameter automorphism group

A(s) = eiGθ,θ̄sAe−iGθ,θ̄s, A ∈ AC .

Such a transformation becomes of importance in the
non-commutative supersymmetric models, which are de-
fined by an algebraic structure of this type (see, e.g. [11]).

Note that in the last two cases we are faced with au-
tomorphisms of the extended algebras which do not leave
A as a set invariant.

2 Finite supertransformation and
differential characterization of the groups

Ia. In order to obtain from (1.5) the finite supertransfor-
mations in A explicitly one has to make use of the relations

Na = a(N − 1) , Nb = b(N − 1),

Ga = b− aG , Gb = −a+ bG

to rearrange the products of

a(s) =
(

cos
√
Ns+

iG√
N

sin
√
Ns

)

× a

(
cos

√
Ns− iG√

N
sin

√
Ns

)

and

b(s) =
(

cos
√
Ns+

iG√
N

sin
√
Ns

)

× b

(
cos

√
Ns− iG√

N
sin

√
Ns

)
.

This gives

a(s) = cos
√
Ns cos

√
N + 1s a

+
sin

√
Ns sin

√
N + 1s√

N(N + 1)
a†b2

+ i
sin

√
Ns cos

√
N + 1s√

N
aa†b

− i
sin

√
N + 1s cos

√
Ns√

N + 1
a†ab, (2.1)

b(s) = cos
√
Ns cos

√
N + 1s b

+
sin

√
Ns sin

√
N + 1s√

N(N + 1)
(b2b† − 2aa†b)

+ i
sin

√
Ns cos

√
N + 1s√

N
(ab†b+ a†b2) (2.2)

− i
sin

√
N + 1s cos

√
Ns√

N + 1
(abb† + a†b2),

with

a ≡ a(0), b ≡ b(0) .

Ib. For the simple algebra at hand one gets δa = b and
δb = −ia, which can be integrated to

a(s) = a cos s
√

i + (b/
√

i) sin s
√

i,

b(s) = b cos s
√

i − a
√

i sin s
√

i. (2.3)

II. The supertransformation in Aθ is particularly simple:

a(s) = a+ sθb , a†(s) = a† − sθb†,

b(s) = b− θsa , b†(s) = b† + θsa†, (2.4)

θ(s) = θ = θ̄(s) .

One readily verifies that this is a ∗-automorphism.
III. For G2

θ,θ̄
there is no simple expression and thus no way

to get explicit expressions for a(s) and b(s).
Alternatively we could first look at the differential equa-

tion which determines the flow. With the notation A′ =
d/dsA(s) we have for the formal derivatives

Ia.

{
a′ = −ib+ 2iGa,
b′ = −ia,

Ib.

{
a′ = b,

b′ = −ia,

II.

{
a′ = θb , θ′ = 0,
b′ = −θa,

III.

{
a′ = θ̄b , θ′ = −ba†,
b′ = −θa , θ̄′ = −ab†,

Remarks.
(1) Compatibility with the product structure and therefore
with canonical commutation or anticommutation relations
(CCR, respectively CAR) requires
(α) a†′a+ a†a′ + a′a† + aa†′ = 0,
(β) b′b† + bb′† − b′†b− b†b′ = 0,
(γ) a′b+ ab′ − ba′ − b′a = 0;
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whereas (β) and (γ) are always satisfied, (α) holds only in
cases Ia, II, III.
(2) In cases II, III the commutation relations require in
addition
(α) θ′a+ θa′ + a′θ + aθ′ = 0,
(β) θ′θ̄ + θθ̄′ + θ̄′θ + θ̄θ′ = 0 .

These conditions are satisfied only in case II. Thus to
say that the θ are just anticommutative numbers and are
not changed by the transformation leads to inconsistencies.

To integrate the differential equations poses different
problems in the four cases, although this way we could
obtain again the finite transformations (2.1)– (2.4).

3 Representations

A representation π is an isomorphism of the algebra with
an operator algebra in a Hilbert space, a ∗-representation is
a ∗-isomorphism, i.e. π(AB) = π(A)π(B), π(A∗) = π(A)∗.
Thus for Aθ we can only have representations and not ∗-
representations, since operator algebras are C∗-algebras.
The GNS-construction leads at first to an inner-product
space which contains zero-norm vectors created by the soul.
Passing to the quotient space we are left only with the body,
the soul-ideal being represented by zero. But for a physi-
cal interpretation this procedure is unavoidable since the
results of measurements are real and not Grassmann num-
bers. This seemingly purely mathematical distinction will
have the consequence that in a representation the trans-
formation in Aθ has no probability interpretation. It will
not give transition probabilities.

An obvious representation of A is given by a quantum
particle with coordinates (x, p) and one spin [2]:

a =
σx − iσy

2
, b =

x+ ip√
2

. (3.1)

For Aθ we have to use a second spin, described by Pauli
matrices τk, and set θ = σ3 (τx − iτy)/2. The usual Fock
representation πF based on a “vacuum” |0〉 with a|0〉 =
b|0〉 = 0 appears to be the most convenient framework for
our considerations. In πF an orthogonal basis is given by

|nf , nb, ng〉 = (a†)nf
(b†)nb

√
nb!

θ ng |0〉 ,

nf , ng = 0, 1 , nb = 0, 1, 2, . . .

For A we have ng = 0, for Aθ we have θ|0〉 �= 0 but
θ2|0〉 = 0. The action of G is now rather simple:

G |0, nb〉 =
√
nb |1, nb − 1〉,

G |1, nb〉 =
√
nb + 1 |0, nb + 1〉 ; (3.2)

thus,

eiGs|0, nb〉 = cos
√
nb s|0, nb〉 + i sin

√
nb s|1, nb − 1〉,

eiGs|1, nb〉 = cos
√
nb + 1 s|1, nb〉

+ i sin
√
nb + 1 s|0, nb + 1〉 .

The action of eiGθs is even simpler:

eiGθs|0, nb, 0〉 = |0, nb, 0〉 − s
√
nb|1, nb − 1, 1〉,

eiGθs|1, nb, 0〉 = |1, nb, 0〉 − s
√
nb + 1 |0, nb + 1, 1〉,

eiGθs|nf , nb, 1〉 = |nf , nb, 1〉 . (3.3)

Once again, for Aθ πF is only a representation but cannot
be a ∗-representation. As a consequence only eiGs but not
eiGθs has a physical interpretation. eiGs changes a boson
into a fermion or vice versa. It does this with a probabil-
ity sin2 √

nb s, respectively sin2 √
nb + 1 s, whereas it leaves

the state unchanged with cos2 probability. On the contrary,
eiGθs does nothing for ng = 1, and for ng = 0 it leaves the
state unchanged with weight 1 and changes ng and bosons
into fermions (or vice versa) with a weight nb s

2, respec-
tively (nb+1) s2, times ‖ θ| 〉 ‖2 which is zero. Clearly, these
weights should not be interpreted as probabilities and we
are forced to conclude that the supertransformation in Aθ

is only an illusion, in contradistinction to the supertrans-
formation in A.

If we give up the hermiticity of θ, that is θ is no longer
hermitian but instead {θ, θ̄} = 1, still keeping the anti-
commutativity, the algebra Aθ = {a, b, θ} becomes the
C∗-algebra AC and we have a Fock ∗-representation πF. It
is based on the vacuum |0〉, which is annihilated by {a, b, θ}.
An orthogonal basis is given by

|nf , ng, nb〉 = (a†)nf (θ̄)ng
(b†)nb

√
nb!

|0〉 ,

nf , ng = 0, 1; nb = 0, 1, 2, . . . (3.4)

We restrict ourselves to an inspection of the unitary im-
plementer eiGs of the supertransformations. The previous
G generalizes to Gθ,θ̄ = θab† + ba†θ̄ and G2

θ,θ̄
is a bit more

complicated, G2
θ,θ̄

= Nb(1−Nf )(1−Ng)+NfNg(1+Nb),
Ng = θ̄θ, G2 = N/2 for Ng = 1/2. Still it is diagonal in πF
and there is nothing wrong with the expansion (1.5), with
N replaced with G2. To work it out we need the action of
Gθ,θ̄:

Gθ,θ̄|0, 0, nb 〉 =
√
nb|1, 1, nb − 1〉,

Gθ,θ̄|1, 1, nb 〉 =
√
nb + 1|0, 0, nb + 1〉. (3.5)

Therefore

eiGθ,θ̄s|0, 0, nb〉 = cos
√
nb s|0, 0, nb〉

+ i sin
√
nb s|1, 1, nb − 1〉,

eiGθ,θ̄s|1, 1, nb〉 = cos
√
nb + 1 s|1, 1, nb〉

+ i sin
√
nb + 1 s|0, 0, nb + 1〉 . (3.6)

Here we are dealing again with a C∗-algebra and a ∗-
representation, so the transition probabilities add to unity.
In fact they are identical to the ones we found in A; θ
acts like a fermion (“spurion”) attached to the original
one and does nothing exceptional. Therefore we should
honestly declare that we have two fermions and restore the
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symmetry between fermions and bosons. As a side remark
we shall show that going to a finite number of bosonic
and fermionic modes changes in the Fock representation
very little.

4 Some generalizations

4.1 The N -fermion/N -boson system

The N -fermion/N -boson system is defined through the
algebra A = {ai, bj}, i, j, k, . . . = 1, 2, . . . , N , with the
usual rules

{ai, a
†
k} = δik =

[
bi, b

†
k

]
,

{ai, ak} = [bi, bk] = [ai, bk] =
[
ai, b

†
k

]
= 0 . (4.1)

We go straight to the question of the supertransformation,

G =
n∑

i=1

ki(aib
†
i + a†

i bi) . (4.2)

In G2 the quartic terms again reduce to the quadratic ex-
pression

G2 =
n∑

i=1

k2
i (a†

iai + b†i bi) =: H . (4.3)

We call it H since it looks like a popular Hamiltonian.
In H the terms with different i commute, in G they do
not. As a consequence, eiGs �= ⊗N

k=1e
iGks, but in the Fock

representation it is still managable. At the risk of boring
the experts we give below the relevant expressions for the
two-boson/two-fermion system (N = 2) explicitly. In this
case, in the orthogonal basis

|nfi , nbj 〉 = (a†
1)

nf1 (a†
2)

nf2
(b†1)

nb1 (b†2)
nb2√

nb1 !nb2 !
|0〉 , i, j = 1, 2,

(4.4)
G acts as

G |0, 0, nb1 , nb2〉 = k1
√
nb1 |1, 0, nb1 − 1, nb2〉

+ k2
√
nb2 |0, 1, nb1 , nb2 − 1〉,

G |1, 0, nb1 , nb2〉 = k1
√
nb1 + 1 |0, 0, nb1 + 1, nb2〉

+ k2
√
nb2 |1, 1, nb1 , nb2 − 1〉,

G |0, 1, nb1 , nb2〉 = k1
√
nb1 |1, 1, nb1 , nb2〉 (4.5)

+ k2
√
nb2 + 1 |0, 0, nb1 , nb2 + 1〉,

G |1, 1, nb1 , nb2〉 = k1
√
nb1 + 1 |0, 1, nb1 + 1, nb2〉

+ k2
√
nb2 + 1 |1, 0, nb1 , nb2 + 1〉,

from which we calculate the unitary action of eiGs =
cos

√
Hs+ i G√

H
sin

√
Hs to be

eiGs |0, 0, nb1 , nb2〉

= cos s
√
k2
1nb1 + k2

2nb2 |0, 0, nb1 , nb2〉

+ i
sin s

√
k2
1nb1 + k2

2nb2√
k2
1nb1 + k2

2nb2

× (
k1

√
nb1 |1, 0, nb1 − 1, nb2〉 + k2

√
nb2 |0, 1, nb1 , nb2 − 1

)
eiGs |1, 0, nb1 , nb2〉

= cos s
√
k2
1(nb1 + 1) + k2

2nb2 |1, 0, nb1 , nb2〉

+ i
sin s

√
k2
1(nb1 + 1) + k2

2nb2√
k2
1(nb1 + 1) + k2

2nb2

× (
k1

√
nb1 + 1 |0, 0, nb1 + 1, nb2〉

+k2
√
nb2 |1, 1, nb1 , nb2 − 1

)
. . .

Note that the transition probabilities for the three out-
comes add to unity.

In the general case of N modes the orthogonal basis is
given by

|{nj}, {mj}〉 =
N∏

i=1

(a†
i )

ni(b†i )
mi |0〉 ,

H|{nj}, {mj}〉 = E|{nj}, {mj}〉,
with

‖ |{nj}, {mj}〉‖ = 1 if nj = 0, 1 ; mk = 0, 1, 2, . . .

The action of G and of the unitary transformation it
implements, correspondingly become

G |{nj}, {mj}〉

=
N∑

i=1

ki

(√
mi + 1 |n1, . . . , ni − 1, . . . ,

nN ,m1, . . . ,mi + 1, . . . ,mN 〉
+

√
mi |n1, . . . , ni + 1, . . . , nN ,m1, . . . ,mi − 1, . . . ,mN 〉)

eiGs|{nj}, {mj}〉
= cos

√
E s |{nj}, {mj}〉

+ i sin
√
E s

N∑
i=1

ki/
√
E

× (√
mi + 1 |n1, . . . , ni − 1, . . . ,

nN ,m1, . . . ,mi + 1, . . . ,mN 〉
+

√
mi |n1, . . . , ni + 1, . . . ,

nN ,m1, . . . ,mi − 1, . . . ,mN 〉).
Note that

‖ | 〉 ‖2 = cos2
√
E s

+ sin2
√
E s

N∑
i=1

k2
i (4.6)
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×
{

(mi + 1) if ni = 1
mi if ni = 0

}
= 1 .

4.2 The poor man’s Wess–Zumino model

As a next generalization and a step towards the field-theory
setting let us consider a model of one Bose and one Fermi
mode, but with an interaction introduced through the fol-
lowing modification of the supercharge:

G = Q̃+ Q̃†,

Q† = a†b → Q̃† = a† (
b+ gb†b

)
,

Q = b†a → Q̃ =
(
b† + gb†b

)
a, (4.7)

with g real. This is nothing but a prototype of the Wess–
Zumino model [12] and we have been dealing so far with
its free-theory limit (g = 0). Such operators on loop space
have been considered in [13].

Again, the Hamiltonian is given by

Hg = G2 = {Q, Q†} ; (4.8)

that is,

Hg = H0 + gH0
(
b+ b+

) − gb† + g2 (
b†b

)2
, (4.9)

with H0 = N . The expansions (1.5) and (1.6) still hold
(because of (4.8)), aswell as conservation of the supercharge
G, [G,H] = 0.

There are many possibilities for the supercharges and
with (4.8) we can always generate a time evolution commut-
ing with the supertransformations. However, already in this
simple model it turns out that these supertransformations
with different charges generate an infinite-dimensional al-
gebra contrary to the free case [14] which appears to be in
this context a lucky exception.

5 Supersymmetric quasiparticles

The transformation (2.1) and (2.2) mixes a and b in a
rather complicated manner and the question arises whether
a special combination A is left intact so that eiGsAe−iGs

produces only a phase factor eiγsA. This means that the
commutator with G should reproduce A. For a polynomial
in a and b this does not happen; commuting with G keeps
increasing the degree of the polynomial in b. However, for
a non-polynomial function f(b†b) this is not necessarily so,
and we shall show now that even a simple choice allows one
to get for the transformed A′ a phase factor with γ = ±1.
We just take f real, continuous and f(x) = 0 ∀x ≥ 1. Then
bf(b†b) = f(b†b+ 1)b since b(b†b)n = (b†b+ 1)nb ∀n ∈ N .
But since b†b ≥ 0, f(b†b+1) = 0 and bf(b†b) = f(b†b)b† =
0.Denoting aa†f(b†b) byP0, aP0 = P0a

† = 0,we claim that

[A±, G] = ∓A±, where A± := P0(a∓ b) .

In the Fock representation P0 is the projection onto the
vacuum.
Proof.

GA± =
(
ab† + a†b

)
P0(a∓ b) = 0,

bb† = 1 + b†b ⇒ P0bb
† = P0aa

† = P0,

A±G = P0(a∓ b)
(
ab† + a†b

)
= P0

(∓ bb†a+ b
)

= ∓A± .

Conclusion.

A±(s) = eisGA±e−isG = e±isA±, thus A†
±A± is invariant.

Question. Is the bastard created by A± (the “susino”) a
boson or a fermion?
Answer. Though (A±(s))2 = 0, neither [A±, A

†
±] nor

{A±, A
†
±} equals 1. A± correspond to elementary SUSY-

excitations and by combining them we can construct the
invariants A±A

†
± and SUSY excitons A±A

†
∓ which have a

phase factor γ = ±2.
Remarks.
(1) Under the time evolution with H = G2 the susinos
A± evolve like the bosons or the fermions, A±(t) = eitA±,
but the situation could be as in the K0–K0 system: by
a small perturbation neither the boson nor the fermion
are time-invariant but only the susinos. Consider Hα =
H + αG + α2/4 = (G + α/2)2. Under its time evolution
neither a nor b but only A± changes just by a phase factor.
Thus in a perfectly supersymmetric situation physics may
become quite unusual.
(2) Under the supertransformation generated by GA, A±
oscillate rigidly

[A±, GA] = ± iA∓ .

More explicitly, with A±(s) = eisGA A± e−isGA , A′ =
d/dsA(s), we get A′

+ = A−, A′
− = −A+ and therefore

the oscillations

A+(r) = A+(0) cos r +A−(0) sin r,

A−(r) = −A+(0) sin r +A−(0) cos r .

(3) A± can be generalized to

A(m,n) ± =
(
a†b†

m−1
+ b†

m
)
P0

(
anbn−1 + bn

)
, (5.1)

with the properties

(A(m,n) ±)† = A(n,m) ±,

A(m,n) ±A(n,r) ± = nA(m,r) ±,

eisGA(m,n) ±e−isG = e±is(√
n−√

m)A(m,n) ± .

It can be interpreted as absorbing n and creatingm susinos.
(4) For the evolution (2.3) even a linear combination of a
and b changes only by a common factor; there we have

a(s)/
√

i + b(s) = et
√

i
(
a/

√
i + b

)
;
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(5) The other two supertransformations mix in some θ’s
and do not leave a function of a and b only invariant.

The unitary operators eisG have eigenvalues e±is
√

n, for
n = 0 the eigenvector is the vacuum |0〉 and for n = 1 they
are A†

±|0〉. For arbitrary n their properties are described
by the following lemma which relates two main streams of
contemporary physics.
Lemma. Except for n = 0, in all other eigenvectors of the
supertransformation eisG the bosons and the fermions of the
one-boson/one-fermion system are maximally entangled.

The Hilbert space of our system is the tensor product of
the fermionic and bosonic Hilbert spaces, H = HF ⊗ HB ,
and vectors which are not of the product form are called
entangled, i.e. the correlations they carry are of quantum
and not of classical origin. A convenient measure of the
entanglement of a vector | 〉 in H is the entropy of the
fermionic density matrix ρF = − TrHB

| 〉〈 | , TrHB
being

the partial trace in HB , namely

E = − TrHF
ρF ln ρF ≤ ln 2 .

However ρB , the state reduced to the bosons, has the
same entropy as ρF . Fermions are thereby not preferred to
bosons.
Proof. One verifies (compare Remark 3 above)

(
a†b+ b†a

)
(|1, n− 1〉 ± |0, n〉)

= ±√
n (|1, n− 1〉 ± |0, n〉) ;

thus

eisG (|1, n− 1〉 ± |0, n〉) = e±is
√

n (|1, n− 1〉 ± |0, n〉) .
Calculating the fermionic densitymatrixρF wefind that

in all cases it corresponds to the tracial state, ρF = 1/2
and thus E = ln 2 for any n. Since the transformation
with eisGA is unitarily equivalent to the one with eisG by a
unitary element that belongs to the Fermi subalgebra, this
does not change the entanglement and the above statement
holds also for its eigenvectors.

The generalization to two modes is straightforward but
the situation there is somewhat different. With the notation
of Sect. 4.1, k1 = 1, k2 = k, the supercharge and the
Hamiltonian become

G = a†
1b1 + a1b

†
1 + k

(
a†
2b2 + a2b

†
2

)
,

H = G2 = a†
1a1 + b†1b1 + k2

(
a†
2a2 + b†2b2

)
.

The eigenvalues of H are nf1 +nb1 +k2(nf2 +nb2), and
correspondingly those ofG are±√

nf1 +nb1 +k2(nf2 +nb2).
In general, the eigenvectors of H are four-fold degenerate
(those of G respectively two-fold degenerate), except the
ground state (the vacuum |0〉 := |0, 0, 0, 0〉), which is not
degenerate, and the states with n1 = 0 or n2 = 0 (only one
mode occupied), which are two-fold degenerate. We shall
use the following basis in the H-space:

ψ1 = |1, nb1 , 1, nb2〉,

ψ2 = |1, nb1 , 0, nb2 +1〉,
ψ3 = |0, nb1 +1, 1, nb2〉,
ψ4 = |0, nb1 +1, 0, nb2 +1〉. (5.2)

Any eigenvectorψ ofH with eigenvalue 1+nb1 +k2(1+nb2)
can be written as

ψ = αψ1 + βψ2 + γψ3 + δψ4 .

The eigenvalue-set (α, β, γ, δ) determines also the eigen-
vectors of G:

Φ1 =
1√

2
(
1 + k̄2

) (
1 + k̄2, ∓k̄, ±1, 0

)
,

Φ2 =
1√

2
(
1 + k̄2

) (
0, ±1, ±k̄, 1 + k̄2) , (5.3)

where k̄2 = k2(nb2 + 1)/(nb1 + 1). Quantum-mechanical
superpositions of these orthogonal eigenvectors with arbi-
trary (in general complex) weights AΦ1 + BΦ2 lead to a
density matrix over the Fermi algebra with eigenvalues

( |A|2
2
,
|B − k̄A|2
2(1 + k̄2)

,
|A+ k̄B|2
2(1 + k̄)2

,
|B|2
2

)
. (5.4)

In order to maximize the entanglement we have to choose
A and B such that |A+ k̄B| = |B− k̄A|, which is achieved
for A = iB. With this, the entropy becomes 2 ln 2, so that
the corresponding state is the tracial state over the Fermi
algebra. To minimize the entanglement we have to make
|A + k̄B| and |B − k̄A| as different as possible. This is
guaranteed for both A and B real, e.g. for A = sinϕ,
B = cosϕ. In Fig. 1 the dependence of the entanglement
on the mixing parameter ϕ and on the relative weight of
the two components k̄ is shown.

The extremal points are then obtained by solving
the equation

(
cosϕ− k̄ sinϕ

)
(sinϕ+ k̄ cosϕ)

2
(
1 + k̄2

) ln

(
cosϕ− k̄ sinϕ

)2

(
sinϕ+ k̄ cosϕ

)2

− sinϕ cosϕ ln
sin2 ϕ

cos2 ϕ
= 0 . (5.5)

For k̄ = 0 the minimum is achieved for sinϕ = 0 or
cosϕ = 0 and amounts toS(ρ) = ln 2. The minimal entropy
increases with k̄ to reach for k̄ = 1 its maximal value
3/2 ln 2, as is shown in Fig. 1b.

Figure 2 shows the entropy (so, entanglement) of the
first, respectively the second fermion of the susino states
for a two-mode system. Zero entanglement occurs only
for k̄ = 0 when the second mode is not affected by the
supertransformation. However, E = 0 appears only at
two points; otherwise the mere existence of the other mode
already influences the behavior of the system by creating
some entanglement.

Thus for the entanglement of the eigenstates we find
the following.
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Fig. 1. Entanglement of the “susino”-state: a in the complete parameter range; b for weight factors k̄ = 0, 0.25, 0.5, 0.75, 1 (the
line-thickness increases with k̄)
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Fig. 2. Entanglement of the first, respectively, the second fermion for weight factors k̄ = 0, 0.25, 0.5, 0.75, 1 (the line-thickness
increases with k̄)

(i) The vacuum is not entangled, E = 0.
(ii) The “one-mode” states nb1 = 0 and nb2 = 0 are char-
acterized with E = ln 2, however the entanglement of the
first fermion with respect to the rest of the system is 0
while for the second fermion it is ln 2 and vice versa.
(iii) In the general case the entanglement varies between
its maximal value Emax = 2 ln 2, which is independent on
k̄, and some minimal value Emin already depending on k̄,
for which ln 2 ≤ Emin ≤ 3/2 ln 2.

6 KMS-states

A theorem due to Buchholz and Ojima [7] says that su-
persymmetry and KMS-structure are incompatible. More
precisely, they show that an equilibrium state cannot be
invariant under the evolution given by the odd deriva-
tions (1.8). Indeed (with x = eβ , β being the inverse tem-

perature),

ω
(
a†a

)
=

1
1 + x

, ω
(
aa†) =

x

1 + x
,

ω
(
b†b

)
=

1
x− 1

ω
(
bb†

)
=

x

x− 1
is so different between bosons and fermions that it is hard
to believe that this will not change by mixing them. Nev-
ertheless we shall show that this happens miraculously
if the evolution is governed by eiGs. With the shorthand
(c, s) = (cos s

√
H, sin s

√
H), this evolution reads

a†(s)a(s) = a†a+ i
cs√
H

[
G, a†a

]
+
s2G

H

[
a†a,G

]
. (6.1)

We need consider only ω(a†a), since a†a + b†b does not
change and if one is invariant so is the other. Now[

a†a,G
]

= a†b− b†a

G
[
a†a,G

]
= a†bb†a− b†aa†b
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and

ω
([
a†a,G

])
= 0,

ω
(
G

[
a†a,G

])
=

1
x+ 1

x

x− 1
− x

x+ 1
1

x− 1
= 0 .

G is invariant under this supertransformationbutGA is not,
and we still have to verify that its thermal expectation re-
mains zero. Indeed, with [G, GA] = 2i(b†b−a†a−2a†ab†b),
this turns out to be true:

ω([G, GA]) = 2i
(

1
x− 1

− 1
x+ 1

− 2
1

x+ 1
1

x− 1

)
= 0 .

So there remains the question of c and s. These are func-

tions given by convergent series of the form
∞∑

k=o

ck
(
s2H

)k

and Tr e−βHHkA = ∂k/∂βk Tr e−βHA. But since the ex-
pectation values of the additional terms vanish for all β the
factors cs/

√
H, s2/

√
H do not change that, and we con-

clude
ω

(
a†(s)a(s)

)
= ω

(
a†a

)
=

1
1 + x

. (6.2)

Contrary to the evolution (2.3), as we are dealing not with
automorphisms but only with a one-parameter group of
maps, we get for Q = a† b

ω(Q(s)) = ω(Q(0)) + s ω(H) = s ω(H) �= 0, (6.3)

in agreement with the Buchholz–Ojima theorem.

7 Concluding remarks

To summarize, we have studied four different transforma-
tions of three mixed Bose–Fermi algebras that do not re-
spect the grading. In all four cases we have one-parameter
groups of transformations which commute with the time
evolution, generated by H. In Ia they are automorphisms,
in Ib only linear and ∗-preserving maps, in II and III they do
not transform A into A. The case Ia represents an explicit
form of a non-linear transformation of creation and destruc-
tion operators which preserves the CCR/CAR structure.

A state gives a representation in a Hilbert space and
an associated probability interpretation; therefore, an im-
portant question to be discussed is what happens under
these transformations with the states. For the three alge-
bras we get
(I.) the usual probabilities;
(II.) SUSY transforms into states of zero norm, so in all
probabilities nothing happens;
(III.) with non-zero probability SUSY creates the Clifford
object θ, θ̄ which actually is unobservable.

We have identified the eigenvectors of the unitary imple-
menter of the supertransformation as SUSY-quasiparticle

states (susinos) with mixed statistics. Except for the vac-
uum, the susino states are entangled. In the degeneracy
space of G the entanglement varies between the maximal
possible value and some minimal value which is bigger
than ln 2.

Another natural question is the one about the invari-
ant structures. Though SUSY mixes fermions with bosons,
there should be combinations of them which remain invari-
ant. They can be readily constructed. In fact, one can find a
time evolution commuting with the SUSY transformation
such that only these objects and not the bosons and the
fermions are time-invariant. The situation is analogous to
the C-breaking in the K0–K

0
system. Finally one can ask

about SUSY-invariant states and in all cases the Fock vac-
uum provides such an example. Less trivial is the thermal
distribution of bosons and fermions which
(1) is invariant under Ia;
(2) is not invariant under Ib (the Buchholz–Ojima theo-
rem [7]);
(3) is trivially invariant under II;
(4) is not invariant under III.
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